Lecture 3. Classification of second order partial differential equations

We would like to simplify the partial differential equations.
We change the independent variables such that the equation with new variables has as soon as easy form, which is called the canonic form.
These canonic forms of the equations are the basis of its classification.
Then we will analyze the canonic form only.  

3.1. Subject of analysis
The general mathematical physics problem are the second order partial differential equations.
We have equations with two independent variables for the easiest case.
The general form of second order partial differential equation with two independent variables is


However, we will consider the linear equation with respect to the high derivatives

                                                                         (3.1)
where aij = aij(x,y).                                                                                                                      

3.2. Change of the independent variables
Determine new independent variable 


We choose these variables such that the equation (3.1) with respect to these variables are as soon as easy. Then we can analyze this easier equation and find its solution u as a function of  and . By the final step, we return to the solution of the equation (3.1) as a function of x and b by the inverse transformation


Find the derivatives




Now determine the second order derivatives






Put the results to the formula (3.1). We get the equation

                                                                         (3.2)
where



and the function  does not depend from the second derivatives.
3.3. Characteristic equation
Definition. The characteristic equation for the equation (3.1) is the ordinary differential equation

                                                                                                  (3.3)

Lemma. If  where c is an arbitrary constant, is the general solution of the equation (3.3), then the function  satisfies the equation

                                                                                                      (3.4)






Proof. The equality  is the concrete relation between x and y. We can interpreted it as the algebraic equation with respect to y. Find its solution  Consider a point  Determine a constant  Now we consider the equality  Now we determine  This is a partial solution of the equation (3.3). Therefore, we get

                                                                                     (3.5)  

Using the equality , we find the differential


Then we find


Put it to the equality (3.5). We obtain

                                                                             (3.6)

Determine here x=x0. Then  Now we get



Thus, the equality (3.4) is true for the arbitrary point  This complete the proof of the lemma.

3.4. Classification of the equality (3.1).
Return to the consideration of the equation (3.3), which can be transformed to the equality


This is the square equation with respect to the derivative. It has two solutions

                                                                                        (3.7)

                                                                                                   (3.8)
The properties of these equations depends from the value of the sign of the value  


which is called the discriminant.



Definition. The equation (3.1) is called hyperbolic at the concrete point, if  parabolic, if  and elliptic, if 


3.5. Hyperbolic equation.





If our equation is hyperbolic, then we have to different equations (3.7) and (3.8) with real value at the right-hand side. Let  and  are its general solutions. Determine    Using the previous lemma, we determine  Therefore, the equality (3.2) is transformed to

                                                                                                            (3.9)
where 


The equality (3.9) is the canonic form of the hyperbolic equation.
Sometimes, one uses other canonic form. Determine the new variables


Then we have


Find the derivatives


Then the equality (3.9) is transformed to

                                                                                                                       (3.10) 

where  This is the second canonic form of the hyperbolic equation.

3.6. Parabolic equation.


For the parabolic case, the equalities (3.7) and (3.8) are equal. Let   be a general solution of this equation. Then we choose  and the function  is arbitrary. Calculate



because of the lemma and the equality  Now determine


because of the previous equality. In this case the equality (3.2) is transformed to

                                                                                                            (3.11)
where 


The equality (3.11) is called the canonic form of the parabolic equation.

3.7. Elliptic equation.



For the elliptic case, the values at the right-hand sides of the equality (3.7) and (3.8) are complex. Besides, it has the same real parts, and its imagine parts are differ in the sign only. Then there are, complex adjoint values. Therefore, if  is the general solution of the equation (3.7), which is the complex function, then   is the general solution of the equation (3.8), where  is the adjoint function to . 


Determine    Now the equality (3.2) is transformed to (3.9) again, but with complex values. For returning to the equation with real parameters, we determine the new variables

 
In this situation we have


Find the value



Using the properties of the complex numbers, determine the equalities  with respect to the variables  and . Thus, the equality (3.8) is transformed to

                                                                                                                       (3.10) 

where  This is the second canonic form of the elliptic equation.

3.8. Examples.
String vibrating equation
Heat equation
Poisson equation

Task
Determine the sets, where the given equation has the concrete type. Transform it to the canonic form for any considered type. 
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It is necessary perform the following steps:
1. Calculate the value of the discriminant D.
2. Using the sign of D determine the sets of the plane xy, where the equation has the concrete type.
3. For the hyperbolic case, write two characteristic equations.
4. Find its general solutions.
5. 

Write these general solutions in the form  and . 
6. 

Determine the new variables   
7. Calculate the coefficients of the equation in the new variables by the given formulas.
8. Determine the canonic form of the given equation for the hyperbolic case.
9. 
For parabolic case, consider the unique characteristic equation, determine variable  by previous method with arbitrary variable , and repeat the actions of hyperbolic case.
10. 
[bookmark: _GoBack]For elliptic case, consider the first characteristic equation with complex parameters, find its general solution, write it is the form , choose the functions  and  as new variables, and repeat the actions of hyperbolic case.
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